Advanced Math
 9a-5
 Binomial Theorem

Combination Function:

$$
\begin{gathered}
{ }_{n} \mathrm{C}_{r}=\frac{n!}{(n-r)!r!} \quad n \text { and } r \text { are integers such that } n \geq 0, r \geq 0, n \geq r \\
\text { The way we read this function is } n \text { Choose } r .
\end{gathered}
$$

Evaluate. (pg 755).

1) ${ }_{5} \mathrm{C}_{3}=\frac{5!}{2!3!}=\frac{5 \cdot 4 \cdot 3!}{2 \cdot 1 \cdot 3!}=10$

This one is read Five Choose Three. The output (10) tells how many combinations of choice are possible. There are ten ways to choose three of five things.

Pascal's Triangle.	See the pattern? Start with the top three ones. Then add the top two numbers to continue the pattern. Each row starts with one.

Evaluate using Pascal's Triangle: $4 \mathrm{C}_{3}=4$

Each node in Pascal's Triange is the output to a Combination function.

Expand and simplify.
27) $(x-y)^{5}=$
$1 x^{5} y^{5}-5 x^{4} y^{1}+10 x^{3} y^{2}-10 x^{2} y^{3}+5 x y^{4}-1 y^{5}$
The negative will alternate because each is $(-y)^{n}$ and powers will be $n=0,1,2,3 \ldots$ Thus even terms are + , odd terms are -

Assignment:
pg. 755
2-10 even, 16-48 every 4th.

